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Abstract— Burst segmentation in OBS networks can signifi-
cantly reduce the amount of data that is lost due to contention
events by dropping or deflecting only the portion of a burst that
overlaps another contending burst. In this letter, we demonstrate
how segmentation combined with deflection routing can be used
to reduce the amount of data that is lost when network elements
fail. By enabling an OBS switch to deflect the tail-end segments
of bursts that are in transmission as soon as it becomes aware
of a downstream link failure, the retransmission of lost data can
be reduced.

Index Terms— optical burst switching, protection and restora-
tion, deflection routing, burst segmentation

I. INTRODUCTION

Optical burst switching (OBS) used out-of-band (OOB)
control packets traveling in advance of bursts of data to reserve
resources at optical switches, so that the data burst sees a
dedicated lightpath between its entry and exit points in the net-
work [1]. Since the introduction of the concept, a considerable
amount of work has led to numerous refinements of the basic
OBS architecture. One such enhancement, burst segmentation,
reduces burst loss rates by allowing OBS switches to drop
portions of bursts, rather than entire bursts, when there is
competition for switching resources [2]. Another contention
resolution technique, deflection routing, allows bursts to be
forwarded on alternate output ports if the preferred output port
is busy [3]. Combining segmentation and deflection routing
has been shown to improve OBS network performance [4].

Deflection routing can be used for failure recovery by
sending bursts on alternate paths to their intended destinations.
As soon as a failure is detected, the OBS switch immediately
upstream from the failure sends bursts that are destined for
the affected output port to other output ports The congestion
caused by displaced traffic can be reduced by deflecting traffic
destined to cross the failed link at switches that are more than
one hop upstream from the failure [5]. If burst segmentation
is being used as a contention resolution mechanism in an
OBS network that also supports deflection routing, these two
techniques can be used to reduce data losses due to failures.
This letter presents an analytical model that allows us to
quantify the amount of data that can be salvaged using this
approach.
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II. ANALYSIS

We use a two-state Markov system, depicted in Fig. 1, to
model the sequence of bursts on the outgoing port of an OBS
switch. The transition rates out of the burst and gap states
are β and γ, respectively. The model is a special case of the
three-state system developed in [6] to study a burst stream that
comprises short and long bursts. Each burst is divided into N
segments whose length, 1/σ, is deterministic. The number of
segments in each burst can be deterministic or random; we
consider both cases in this letter. The length of a given burst
is B = N/σ; when N is random, B has density fB and mean
1/β. G is the length of the gap between bursts; we assume that
it is exponentially distributed with mean 1/γ. We define the
burst/silence cycle C = B+G to be the sum of the duration of
a burst and the duration of the gap immediately following it,
as shown in Fig. 2(a). The expected value of C is β−1 +γ−1.
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Fig. 1. Two-state Marcovian model of the traffic on an OBS switch output
port. β and γ are the transition rates out of the burst and gap states,
respectively.

We assume that failure events are characterized by a Poisson
arrival process and that the time required for the switch to
detect each failure is deterministic. Thus, the failure detection
events at an OBS switch follow a Poisson process that is
a time-shifted copy of the failure arrival process. We are
interested in the burst/gap cycle in which the failure detection
time falls. Let t = 0 correspond to the leading edge of the burst
in this cycle. We assume that the average time between failures
is much larger than the average burst/gap cycle duration, so
that the probability of more than one failure in a given cycle
is negligible.

Let tN be the failure notification time, i.e. the time at
which the switch is notified by its downstream neighbor that
a link failure has occurred. Because failure events and failure
notification events occur according to a Poisson process, and
because we are conditioning on the occurrence of a notification
event in the burst/gap interval [0, C], it follows that the
notification time tN is uniformly distributed over the interval
[0, c], given a particular value c for C. Thus, given a value
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n for N (which also determines the conditional length of the
burst, b), and a value g for G, the length of the gap between
bursts, the conditional density for tN is

ftN |n,g(t) =
{

1/(g + n/σ), 0 ≤ t < c
0, else. (1)

Let X be the amount of data that can be salvaged when burst
segmentation is used. In order to determine µX , the average
value of X , we compute the expected duration of the time
interval [tN , B]. Segments whose transmission time falls after
the failure notification time are deflected to other output ports.
Performing this operation requires creating a new header for
the deflected group of segments and optically buffering them
in a fiber delay line to create a sufficiently large time interval
between the new header and the deflected segments. Without
burst segmentation, this block of data will be lost along with
the rest of the burst. If the failure notification time occurs after
the tail end of the burst, i.e. if tN > B, the entire burst will
be lost regardless of whether segmentation is used.

If tN occurs in the kth segment (i.e., in the time interval
[(k − 1)/σ, k/σ]), that segment cannot be recovered because
its header was already transmitted over the failed output port.
The segments that follow the kth segment can be deflected
onto an alternate output port. Using Fig. 2(b), we find that the
amount of data that can be salvaged is

X(N ; tN ) =


N−k

σ , k−1
σ ≤ tN < k

σ ,
k = 1, 2, . . . , N

0, tN ≥ N/σ.
(2)

Using Eq. (1) and Eq. (2), we can compute µX|n,g , the
expected amount of salvageable data conditioned on values
for N and G:

µX|n,g =
∫ ∞

0

X(n; t)ftN |n,g(t) dt

=
1

g + n/σ

n∑
k=1

∫ k
σ

k−1
σ

n− k

σ
dt

=
1

g + n/σ

n(n− 1)
2σ2

=
b(b− 1/σ)
2(b + g)

. (3)

(   −1)/σN B

X

t0 tN 1/σ 2/σ
...

 =   /σN

B C

G

t0
burst gap

tN
(a)

(b)

Fig. 2. (a) The structure of a burst/gap cycle. The failure notification time
tN is uniformly distributed over the cycle time. When failure notification
takes place during the gap, no tail-end salvaging as possible. (b) The effect
of segmentation on the amount of recoverable data. The segments that follow
the segment containing tN can be deflected to alternate output ports, so X
is the amount of salvagable data.

To obtain µX , we use µX|n,g from Eq. (3) and fN,G(n, g) =
fG(g)Pr {N = n}, the joint density of N and G, which are

independent:

µX =
∫ ∞

0

fG(g)

( ∞∑
n=1

Pr {N = n}µX|n,g

)
dg. (4)

We consider two burst size distributions. In the first case,
the burst length is deterministic. Consequently, the number
of segments per burst, N , is also deterministic with value
σ/β, where σ/β is an integer, and its mass function is
δ(n−σ/β), where δ(n) is the Kronecker delta function. Since
G is exponentially distributed, Eq. (4) becomes

µX =
∫ ∞

0

γe−γg(1− β/σ)
2β2(g + 1/β)

dg =
γeγ/β

2β2
(1−β/σ)Γ(0, γ/β),

(5)
where Γ(a, x) =

∫∞
x

ua−1e−u du is the incomplete gamma
function. As the segment length decreases while the average
burst size 1/β remains fixed (i.e., as σ → ∞), the condi-
tional expected amount of salvageable data given by Eq. (3)
approaches b2/[2(b + g)], and µX from Eq. (5) approaches

lim
σ→∞

µX =
γeγ/β

2β2
Γ(0, γ/β). (6)

If the number of segments in the burst is geometrically
distributed, with probability mass function

Pr {N = n} = Pr {B = n/σ} = (1− p)pn−1, n = 1, 2, . . .

applying Eq. (4) yields

µX =
γ(1− p)

2σ2

∞∑
n=1

n(n− 1)pn−1eγn/σΓ(0, γn/σ). (7)

This does not produce a closed-form result but we can obtain
one in the limit as the segment size becomes small. Because
µB = 1/β, it follows that p = 1 − β/σ. We show that as
the average segment length 1/σ decreases while the average
burst size remains fixed, the density of B approaches an
exponential density with mean 1/β. Because B = N/σ,
it follows that Pr {B > t} = Pr {N > bσtc} = (1 −
β/σ)bσtc. Thus log (Pr {B > t}) = bσtc

σ log ((1− β/σ)σ),
and limσ→∞ log (Pr {B > t}) = t log

(
e−β

)
= −βt. There-

fore limσ→∞ Pr {B > t} = e−βt and the burst length
is exponentially distributed in the limit. Recalling that
limσ→∞ µX|n,g = b2/[2(b+g)], we can get µX by computing

µX =
∫ ∞

0

∫ ∞

0

b2

2(b + g)
fB,G(b, g) db dg, (8)

where fB,G is the joint density of B and G. Since they
are independent and exponentially distributed with respective
means 1/β and 1/γ, Eq. (8) becomes

µX =
βγ

2

∫ ∞

0

e−γg

(∫ ∞

0

b2

(b + g)
e−βbdb

)
dg

=
βγ

2

[∫ ∞

0

1− βg

β2
e−γgdg

+
∫ ∞

0

g2e(β−γ)g

(∫ ∞

βg

e−b

b
db

)
dg

]
.
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The first integral can be evaluated directly. The double integral
can be simplified by changing the order of integration, which
gives us

µX =
βγ

2

[
γ − β

β2γ2
+
∫ ∞

0

(∫ b/β

0

g2e(β−γ)gdg

)
e−b

b
db

]

=
(β − γ) (γ − 3β)− 2β2 log (γ/β)

2β(β − γ)3/γ
. (9)

Equation (9) assumes the indeterminate form 0/0 when γ = β.
Applying L’Hôpital’s Rule yields limγ→β µX = β−1/3.

In Fig. 3, we plot the amount of data that can be salvaged
from a failure event versus the output port load ρ = γ/(β+γ),
which is the probability that the output port is active. We
express the amount of salvageable data as a fraction of the
average burst length, which we obtain by multiplying µX by
β. We plot results for both deterministic and geometrically dis-
tributed burst lengths where the number of segments per burst,
N = σ/β, is 2 and 10 using Eq. (5) and Eq. (7), respectively.
We also plot results for the case where σ →∞, using Eq. (6)
and Eq. (9) for the deterministic and exponentially distributed
cases. To generate the plots, we use a change of variables
w = γ/β = ρ/(1− ρ) so that, for example, Eq. (9) becomes

βµX =
w((1− w)(w − 3)− 2 log(w))

2(1− w)3
. (10)

To plot Eq. (7), we also use the fact that p = 1− β/σ, giving

βµX =
w

2N3

∞∑
n=1

n(n− 1)(1−N−1)n−1enw/NΓ(0, nw/N).

(11)
If σ = β, the amount of salvageable data is 0 because it

is not possible to redirect a partial segment to an alternate
output port. For other values of σ, the average performance
of the burst segmentation scheme is better when the burst
length is geometrically distributed. The maximum increase
in salvageable data with respect to the deterministic case is
0.0282 for σ/β = 2 and 0.0414 for σ/β = 10. As the
output port becomes fully utilized (i.e., as ρ → 1), βµX →
(1 − β/σ)/2, as shown in the figure. Because of this, it is
apparent that if there are more than 10 segments in the average
burst, we will achieve performance that is close to the theo-
retical maximum. Segmenting bursts at shorter time intervals
increases both complexity and overhead. Network designers
can use the models presented in this letter to determine how
finely segmented the bursts can be while keeping system costs
within acceptable limits. Finally, we note that in all cases, the
best that we can do is to salvage 1/2 of a burst on average.

III. SUMMARY

In this letter, we developed a theoretical model that allows
us to calculate the average amount of data that can be salvaged
after a failure on a given output wavelength at an OBS switch.
We used this model to compute the mean salvageable burst
length when the duration of the gap between bursts is expo-
nentially distributed and when the burst length is either fixed or
exponentially distributed. The salvaging mechanism described
in this letter provides an added benefit to OBS networks
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Fig. 3. Theoretical values of the burst fraction βµX that is salvageable after
a failure event if burst segmentation and deflection routing are used.

that use burst segmentation and deflection routing to support
contention resolution. Through salvaging, the segmentation
architecture can be extended to support failure recovery at
little additional cost to the network operator.
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